BRIEF CONTENTS
1 Ch 1, THE SIX TRIGONOMETRIC FUNCTIONS
51 Ch 2, RIGHT ANGLE Trigonometry
106 Ch 3, RADIAN MEASURE
162 Ch 4, GRAPHING AND INVERSE FUNCTIONS
236 Ch 5, IDENTITIES AND FORMULAS
279 Ch 6, EQUATIONS
316 Ch 7, TRIANGLES
368 Ch 8, COMPLEX NUMBERS AND POLAR COORDINATES
422 APPENDIX A - REVIEW OF FUNCTIONS
447 APPENDIX B - EXPONENTIAL AND LOGARITHMIC FUNCTIONS
COMPLETE CONTENTS
Chapter 1 THE SIX TRIGONOMETRIC FUNCTIONS
Page 1
2 1.1 ANGLES, DEGREES, AND SPECIAL TRIANGLES
14 1.2 THE RECTANGULAR COORDINATE SYSTEM
26 1.3 DEFINITION I: TRIGONOMETRIC FUNCTIONS
32 1.4 INTRODUCTION TO IDENTITIES
40 1.5 MORE ON IDENTITIES
45 SUMMARY
47 TEST
49 PROJECTS
Chapter 2 RIGHT TRIANGLE TRIGONOMETRY
Page 51
52 2.1 DEFINITION II: RIGHT TRIANGLE TRIGONOMETRY
61 2.2 CALCULATORS AND TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE
69 2.3 SOLVING RIGHT TRIANGLES
78 2.4 APPLICATIONS
91 2.5 VECTORS: A GEOMETRIC APPROACH
100 SUMMARY
103 TEST
104 PROJECTS
Chapter 3 RADIAN MEASURE
Page 106
107 3.1. REFERENCE ANGLE
114 3.2 RADIANS AND DEGREES
124 3.3 DEFINITION III: CIRCULAR FUNCTIONS
133 3.4 ARC LENGTH AND AREA OF A SECTOR
144 3.5 VELOCITIES
155 SUMMARY
157 TEST
159 PROJECTS
Chapter 4 GRAPHING AND INVERSE FUNCTIONS
Page 162
163 4.1 BASIC GRAPHS AND AMPLITUDE
177 4.2 PERIOD, REFLECTION, AND VERTICAL TRANSLATION
189 4.3 PHASE SHIFT O
200 4.4 FINDING AN EQUATION FROM ITS GRAPH
211 4.5 GRAPHING COMBINATIONS OF FUNCTIONS
217 4.6 INVERSE TRIGONOMETRIC FUNCTIONS
229 SUMMARY
232 TEST
234 PROJECTS
Chapter 5 IDENTITIES AND FORMULAS
Page 236
237 5.1. PROVING IDENTITIES
255 5.2 SUM AND DIFFERENCE FORMULAS 245 5.3 DOUBLE-ANGLE FORMULAS
262 5.4 HALF-ANGLE FORMULAS
267 5.5 ADDITIONAL IDENTITIES
276 SUMMARY 274 TEST
277 PROJECTS
Chapter 6 EQUATIONS
Page 279
280 6.1 SOLVING TRIGONOMETRIC EQUATIONSvi
289 6.2 MORE ON TRIGONOMETRIC EQUATIONS
294 6.3 TRIGONOMETRIC EQUATIONS INVOLVING MULTIPLE ANGLES
302 6.4. PARAMETRIC EQUATIONS AND FURTHER GRAPHING
311 SUMMARY
312 TEST
313 PROJECTS
Chapter 7 TRIANGLES
Page 316
317 7.1 THE LAW OF SINESO
328 7.2 THE AMBIGUOUS CASE
336 7.3 THE LAW OF COSINES
343 7.4 THE AREA OF A TRIANGLE
348 7.5 VECTORS: AN ALGEBRAIC APPROACH APPROACH 348
357 7.6 VECTORS: THE DOT PRODUCT
362 SUMMARY
364 TEST
366 PROJECTS
Chapter 8 COMPLEX NUMBERS AND POLAR COORDINATES
Page 368
369 8.1 COMPLEX NUMBERS
377 8.2 TRIGONOMETRIC FORM FOR COMPLEX NUMBERS
383 8.3 PRODUCTS AND QUOTIENTS IN TRIGONOMETRIC FORM
396 8.4 ROOTS OF A COMPLEX NUMBER 389 8.5 POLAR COORDINATES
406 8.6 EQUATIONS IN POLAR COORDINATES AND THEIR GRAPHS
416 SUMMARY
419 TEST
420 PROJECTS
APPENDIX A
422 APPENDIX A REVIEW OF FUNCTIONS
423 A.1 INTRODUCTION TO FUNCTIONS
435 A.2 THE INVERSE OF A FUNCTION
APPENDIX B
447 APPENDIX B EXPONENTIAL AND LOGARITHMIC FUNCTIONS
448 B.1 EXPONENTIAL FUNCTIONS
457 B.2 LOGARITHMS ARE EXPONENTS
465 B.3 PROPERTIES OF LOGARITHMS
470 B.4 COMMON LOGARITHMS AND NATURAL LOGARITHMS
478 B.5 EXPONENTIAL EQUATIONS AND CHANGE OF BASE
ANSWERS TO EXERCISES AND CHAPTER TESTS A-1
INDEX I-1