Chapter 1 The Integers
Page 1
1 1.1 Terminology Sets
2 1.2 Basic Properties
5 1.3 Greatest Common Divisor
7 1.4 Unique Factorization
12 1.5 Equivalence Relations and Congruences
Chapter 2 Groups
Page 16
16 2.1 Groups and Examples
26 2.2 Mappings
33 2.3 Homomorphisms
41 2.4 Cosets and Normal Subgroups
55 2.5 Application to Cyclic Groups
59 2.6 Permutation Groups
67 2.7 Finite Abelian Groups
73 2.8 Operation of a Group on a Sets
79 2.9 Sylow Subgroups
Chapter 3 Rings
83 3.1 Rings
87 3.2 Ideals
90 3.3 Homomorphisms
100 3.4 Quotient Fields
Chapter 4 Polynomials
Page 105
105 4.1 Polynomials and Polynomial Functions
118 4.2 Greatest Common Divisor
120 4.3 Unique Factorization
129 4.4 Partial Fractions
136 4.5 Polynomials Over Rings and Over the Integers
143 4.6 Principal Rings and Factorial Rings
152 4.7 Polynomials in Several Variables
159 4.8 Symmetric Polynomials
165 4.9 The Mason-Stothers Theorem
171 4.10 The abc Conjecture
Chapter 5 Vector Spaces and Modules
Page 177
177 5.1 Vector Spaces and Bases
185 5.2 Dimension of a Vector Space
188 5.3 Matrices and Linear Maps
192 5.4 Modules
203 5.5 Factor Modules
205 5.6 Free Abelian Groups
210 5.7 Modules over Principal Rings
214 5.8 Eigenvectors and Eigenvalues
220 5.9 Polynomials of Matrices and Linear Maps
Chapter 6 Some Linear Groups
Page 232
232 6.1 The General Linear Group
236 6.2 Structure of GL,(F)
239 6.3 SL2(F)
245 6.4 SLn(R) and SL,(C) Iwasawa Decompositions
252 6.5 Other Decompositions
254 6.6 The Conjugation Action
Chapter 7 Field Theory
Page 258
258 7.1 Algebraic Extensions
267 7.2 Embeddings
275 7.3 Splitting Fields
280 7.4 Galois Theory
292 7.5 Quadratic and Cubic Extensions
296 7.6 Solvability by Radicals
302 7.7 Infinite Extensions
Chapter 8 Finite Fields
Page 309
309 8.1 General Structure
313 8.2 The Frobenius Automorphism
315 8.3 The Primitive Elements
316 8.4 Splitting Field and Algebraic Closure
317 8.5 Irreducibility of the Cyclotomic Polynomials Over Q
321 8.6 Where Does It All Go? Or Rather, Where Does Some of It Go?
Chapter 9 The Real and Complex Numbers
Page 326
326 9.1 Ordering of Rings
330 9.2 Preliminaries
333 9.3 Construction of the Real Numbers
343 9.4 Decimal Expansions
346 9.5 The Complex Numbers
Chapter 10 Sets
Page 353
353 10.1 More Terminology
354 10.2 Zorn's Lemma
359 10.3 Cardinal Numbers
369 10.4 Well-ordering
Appendix
Page 373
373 1. The Natural Numbers
378 2. The Integers
379 3. Infinite Sets
381 Index